A Topological and simplicial models of identity types

نویسندگان

  • BENNO VAN DEN BERG
  • RICHARD GARNER
چکیده

In this paper we construct new categorical models for the identity types of Martin-Löf type theory, in the categories Top of topological spaces and SSet of simplicial sets. We do so building on earlier work of Awodey and Warren, which has suggested that a suitable environment for the interpretation of identity types should be a category equipped with a weak factorisation system in the sense of Bousfield–Quillen. It turns out that this is not quite enough for a sound model, due to some subtle coherence issues concerned with stability under substitution; and so our first task is to introduce a slightly richer structure—which we call a homotopy-theoretic model of identity types—and to prove that this is sufficient for a sound interpretation. Now, although both Top and SSet are categories endowed with a weak factorisation system—and indeed, an entire Quillen model structure—exhibiting the additional structure required for a homotopy-theoretic model is quite hard to do. However, the categories we are interested in share a number of common features, and abstracting these leads us to introduce the notion of a path object category. This is a relatively simple axiomatic framework, which is nonetheless sufficiently strong to allow the construction of homotopy-theoretic models. Now by exhibiting suitable path object structures on Top and SSet, we endow those categories with the structure of a homotopy-theoretic model: and, in this way, obtain the desired topological and simplicial models of identity types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariance of the barycentric subdivision of a simplicial complex

‎In this paper we prove that a simplicial complex is determined‎ ‎uniquely up to isomorphism by its barycentric subdivision as well as‎ ‎its comparability graph‎. ‎We also put together several algebraic‎, ‎combinatorial and topological invariants of simplicial complexes‎.

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

Cubical sets and the topological topos

Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. This paper contributes to the understanding of this model. We make three contributions: 1. Johnstone’s topological topos was created to present the geometric realization of simplicial se...

متن کامل

A Comparison of Vassiliev and Ziegler-živaljević Models for Homotopy Types of Subspace Arrangements

In this paper we represent the Vassiliev model for the homotopy type of the one-point compactification of subspace arrangements as a homotopy colimit of an appropriate diagram over the nerve complex of the intersection semilattice of the arrangement. Furthermore, using a generalization of simplicial collapses to diagrams of topological spaces over simplicial complexes, we construct an explicit ...

متن کامل

APPROXIMATE IDENTITY IN CLOSED CODIMENSION ONE IDEALS OF SEMIGROUP ALGEBRAS

Let S be a locally compact topological foundation semigroup with identity and Ma(S) be its semigroup algebra. In this paper, we give necessary and sufficient conditions to have abounded approximate identity in closed codimension one ideals of the semigroup algebra $M_a(S)$ of a locally compact topological foundationsemigroup with identity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010